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Abstract: Cyclization equilibrium constants Kx for the formation of cyclic siloxanes4-Si(CH3)2-Otr from the linear polymer 
are examined on the basis of the theory presented in the preceding paper with particular attention to the range 7 < x < 30. The 
configurational averages of the required moments and polynomials are calculated using exact matrix generation methods and 
Monte Carlo techniques. The density W(O) of chain vectors at r = 0 is considerably overestimated by the Gaussian approxima­
tion. Values of W(O) calculated in higher approximation yield lower values of Kx, which are in satisfactory agreement with ex­
periment for x > 15. For 7 < x < 15, the discrepancies between theory and experiment are reduced but not eliminated by use 
of the more accurate values of W(O). Further improvement is achieved by taking account of the orientational correlation be­
tween terminal bonds of the x-meric acyclic sequence, which is found by calculation to be unfavorable to cyclization for x > 
10. At x = 12, the orientational correlation factor reduces Kx by about half, according to the computations. The factor in­
creases toward unity with increase in x; at x = 30 a reduction OfAfx of only about 10% is indicated. Although the calculations 
are unreliable for x < 10, an increase in the orientational correlation factor is intimated for x < 6, in harmony with the larger 
values of Kx observed for small rings. The calculations are in approximate agreement with the experimental results that have 
been reported for the cyclic siloxanes in the intermediate range of x but fail to reproduce detailed features of the observed de­
pendence of Kx on x in the range x = 10-16. 

Polymerization of disubstituted siloxanes invariably yields 
substantial quantities of cyclic products 

1TSiR2-O]-J 

at equilibrium.1 The presence of an appreciable fraction of such 
materia] in poly(dimethylsiloxane) (PDMS), in which R = 
CH3, was first observed by Scott.2 Subsequently, a wealth of 
experimental data has been reported3^6 on the concentrations 
of various cyclic oligomers of PDMS at equilibrium over the 
range x = 3 to 200. These concentrations, determined by 
chromatographic methods, equate to the cyclization equilib­
rium constant'Kx defined in the preceding paper,7 hereafter 
designated 1. 

Results for x > 20 (i.e., for n > 40 bonds) determined in 
bulk and in poor solvents (near the theta point) have been 
shown to be approximately in agreement ' - 7 ^ with cyclization 
constants Kx calculated from eq 1-12 (spherical Gaussian 
density; directional correlations neglected), this being a variant 
of the relation (see eq 1-13) deduced by Jacobson and Stock-
mayer." The parameter (r„2) appearing in eq 1-12 was 
evaluated on the basis of experimental determinations of (r1) 
for linear PDMS of high molecular weight.12 Conversion to 
values of (rn

2) for short chains was carried out according to 
rotational isomeric state theory.13 Over the range 35 < x < 200 
experimental values OfATx for the equilibrated melt at 110 0 C 
are only about 15% below those calculated in the foregoing 
manner.1-6 Dilution with diglyme (a theta solvent) to a con­
centration of 220 g I. -1 yielded6 uniformly lower values of Kx 

throughout this range; departures from the calculations av­
erage about 25%. Although the discrepancies exceed the stated 
experimental errors severalfold, the measure of agreement is 
remarkably good in view of the fact that it is achieved without 
manipulation of adjustable parameters. (When the system is 
diluted with toluene, a good solvent, somewhat lower values 
of Kx are obtained for x > 50, apparently due to effects of 
excluded volume.3,6) 

As the size x of the ring is diminished, experimental values 
of Kx fail to increase as rapidly as predicted by eq 1-12; see 
Figure 2 below. At x = 16 the discrepancy increases to ca. 
30%,5'6 i.e., the ratio of ATv(obsd) to ATx(calcd) according to 
eq 1-12 is ca. 0.70. At x = 10-11, this ratio falls to ca. 0.25. The 
observed equilibrium constant passes through a minimum at 
x — 12, the presence of which is attested by several separate 
investigations.3'6 As x decreases further, Kx increases rapidly; 

for x = 4 and 5 it exceeds the values calculated according to 
eq 1-12 by a factor of 2-3. 

At the outset of the present investigation, it appeared that 
the marked deviations in the range 7 < x < 16 from the Ja-
cobson-Stockmayer theory as expressed in slightly modified 
form by eq 1 -12 might conceivably find explanation in (i) de­
partures from the assumed spherical Gaussian distribution 
W(O) about the zeroth atom of the chain and (ii) the effects 
of directional correlations discussed in 1 and embodied in the 
factor 2 r 0 ( l ) ; see eq 1-14.7 

Calculations of moments by Chang16-17 on PDMS chains 
of finite length point to severe deviations from the spherical 
Gaussian distribution for x < 40. In particular, the asymmetry 
of W(T) reduces the density W(O) appreciably at r = 0. Hence, 
factor (i) was implicated as responsible, in part at least, for the 
departures of Kx from the Jacobson-Stockmayer theory in the 
intermediate range of x. 

Beevers and Semlyen8 had shown previously that approxi­
mate agreement with theory may be achieved for x - 8 and 
9 by enumeration of all conformations and estimating the 
density W(O) at r = 0 from the sum of statistical weights for 
those conformations for which |r| falls within a specified small 
range about r = 0. These computations suggested that factor 
(i), i.e., the non-Gaussian character of the distribution, may 
alone account for departures from the simpler theory for x = 
8 and 9. The direct enumeration procedure of Beevers and 
Semlyen becomes inoperable for large x owing to the excessive 
number of conformations. 

In this paper we report numerical calculations carried out 
with the object of examining the respective effects of (i) and 
(ii) above on values of the cyclization constants Kx for PDMS 
sequences in the range 7 < x < 30. 

Basis of the Computations 

The PDMS chain in a conformation approaching the re­
quirements for cyclization is illustrated in Figure 1 (compare 
Figure 1 -1). The coordinate system of reference is defined by 
the bond pair Si-O and O-Si, the X axis being along the for­
mer bond. The choice of Si rather than O as the initial atom 
is arbitrary. Obviously, the chain comprising the sequence of 
n = 2x atoms is the same regardless of which terminus, Si or 
O, is chosen as zeroth atom, or, equivalently, regardless of 
which bond, O-Si or Si-O, is established in forming the ring 
with n skeletal atoms. Thus, the value deduced for Kx must be 
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Figure 1. PDMS chain in a conformation with small end-to-end vector 
r.2*in the reference frame of the first Si-O bond. The angle A0 gives the 
orientation of the hypothetical (2x + l)th bond with respect to bond 1, 
i.e., the A" axis. 

the same in the respective reference frames affixed to Si-O-Si 
and O-Si-0. Moreover, the densities W(O) of chain vectors 
at r = O must be equal in the two representations for a chain 
each of whose units consists of two equivalent bonds, and hence 
has twofold symmetry. It follows from eq 1-10 that values of 
2To( 1) <£ must also be invariant to the choice of initial atom and 
frame of reference. Values of 2Fo(I) may differ only to the 
extent that $ differs in the two representations. We replace $ 
by unity in this work (see 1); differences in 2To(I) are pre­
sumed to be negligible. 

The bond length / and bond angles were assigned the values 
/ = 1.64 A, ZSiOSi = 143°, and ZOSiO = 110°, the same 
having been used in previous investigations dealing with PDMS 
chains.i3'18 Rotational isomeric states were chosen at <p = 0°, 
±120° as before. Statistical weight matrices of the conven­
tional form13'18 

U = 

1 cr a 

1 (T OW 

1 (TO) (T 

(D 

with the three states indexed in the order t, g+, and g~ were 
employed. In the matrix Ua for the bond Si-O preceded by 
O-Si, a) = o;a = 0; in Ub for bond O-Si preceded by Si-O, w 
= ojb- The statistical weights were assigned values for a tem­
perature of 110 0C as follows:13 a = 0.327 and o)b = 0.25. 

The Probability Density W(O) and Its Influence on Kx 

The density W(O) of chain vectors with r = 0 is required for 
the calculation of (P^) r=o (see eq 1-22 and 1-27) as well as for 
the calculation of Kx. Its evaluation is difficult for short chains 
where the error of the Gaussian approximation is large14,15 and 
series expansions in higher moments converge slowly.10-15,16 

In order to determine the most suitable approach for estimating 
W(O), values obtained by different methods are compared. 
Instead of displaying W(O), we plot the values of A"* calculated 
according to eq 1-11 with acx = 2x, the relative.orientation of 
the terminal bonds being ignored in this expression. The in­
fluence of the density distribution on Kx can thus be examined 
apart from the effects of other factors. 

The density in the vicinity of r = 0 was first calculated by 
generating Monte Carlo chains using conditional probabili­
ties15 obtained from the statistical weights given above, the 
number of chain termini falling within a sphere of radius br 
about the origin being divided by the volume of the sphere. In 
order to achieve equitable sampling at each chain length, we 
let br be proportional to (r2) '/2, taking 8r = 0.3 (r2) '/2 or br 
= 0.5(T2)1/2. These domains sample about 4 and 11%, re­
spectively, of the total populations. Calculations were carried 
out for chains having lengths 6 < x < 30, with 30 000 chains 
being generated at each x. The densities deduced using the two 
domains are in good agreement. The larger sample with br = 
0.5(T2)1/2 was subject to smaller statistical error and hence 
was used in subsequent calculations. The densities Jf(O) thus 
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Figure 2. Cyclization equilibrium constants Kx calculated neglecting 
orientational correlations between chain ends. The various solid curves 
were calculated using the several approximations for W(O) described in 
the text. The dashed curve summarizes experimental results; see Figure 
6. 

obtained for 7 < x < 9 agree approximately with the results 
of Beevers and Semlyen8 obtained by direct enumeration. 
Equilibrium constants Kx calculated from these densities ac­
cording to eq 1 -11, in which the directional factor To( 1) is ig­
nored, are represented by the curve labeled "Monte Carlo" in 
Figure 2. 

The curve labeled "spherical Gaussian" refers to the 
Gaussian distribution centered at r = 0. It was obtained ac­
cording to eq 1-12 from the second moment (rn

2) evaluated 
by standard methods.19 

Curve 2 in Figure 2 was obtained by use of nonspherical 
Gaussian density14,15 W&(p) centered at r = a (see eq 1-29), 
where a is the persistence vector defined by a = (r) and p == 
r - a. Thus, W(O) in eq 1-11 was equated to WA(-a). The 
distribution Wa(p) is the product of three orthogonal Gaussians 
with moduli given by the'eigenvalues of the second moment 
tensor (ppr). 

The other solid curves in Figure 2 were calculated by 
Chang17 from the three-dimensional Hermite expansion20 of 
W3^p) truncated at the tensor polynomial of the rank indicated 
for each curve. Relationships and procedures used are given 
elsewhere.15,16,20 The decrease OfKx in Figure 2 with extension 
of the three-dimensional Hermite series up to terms of sixth 
rank reflects a corresponding trend in the values of W(O) = 
Wa(—a). It finds precedent in calculations of densities at r = 
0 for polymethylene chains with n < 50 bonds.15 Presumably 
these trends would be reversed if higher terms were available 
to be included. Eventual convergence to the Monte Carlo curve 
in Figure 2 should be expected. Many additional terms evi­
dently would be required however to realize this conver­
gence. 

The moment expansion truncated at the fourth tensor 
polynomial (involving moment tensors up to fourth rank) gives 
values of W(O), and hence of Kx, in closer agreement with the 
results of the Monte Carlo calculations than expansions 
truncated at the fifth and sixth tensor polynomials. In fact, 
agreement of the fourth tensor polynomial calculations with 
the Monte Carlo results is quite satisfactory, for the purpose 
at hand, for x > 8. 
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Similar calculations were carried out using the ordinary 
Hermite series, cited in 1 (see eq 1-25 and 1-26), that involves 
the scalar even moments (r2), (r4), etc., the series being 
truncated at various Hermite polynomials up to g\o- The mo­
ments were evaluated by (exact) matrix generation.'9 Diver­
gences of the Kx thus calculated from the results of the Monte 
Carlo calculations are generally greater than for the three-
dimensional expansion. Truncation at g* yields a curve that 
is very close to curve "4" in Figure 2 for x > 8, and hence that 
approximates the "Monte Carlo" curve equally well. No ex­
planations are apparent for this correspondence. However, it 
holds also for the systems treated in the following paper.21 

Accepted as an empirical observation, it facilitates subsequent 
calculations of W(O) for x > 8, which are carried out using the 
ordinary Hermite expansion (eq 1-25) truncated at g4. The 
moments (r2) and (r4) suffice, and these are readily com­
puted.19 

The dashed curve in Figure 2 joins mean values taken from 
experimental data.3-6 These data are presented in full in Figure 
6. Refinement of W(O) beyond the usual Gaussian approxi­
mation in the manner indicated above brings theory and ex­
periment into satisfactory agreement for x > 15. At x = 16, 
the Gaussian density W(O) is about 40-45% greater than the 
more accurate estimates obtained by series expansion to the 
fourth moment or by Monte Carlo calculations, as reflected 
in the Kx values traced by the indicated curves in Figure 2. 
Convergence to the Gaussian density with increase in x is slow: 
at x = 30, the difference is ca. 20%; according to calculations 
beyond the range covered in Figure 2, a difference of ca. 10% 
persists at x = 70. For x > 15, the departures of W(O) from 
Gaussian aappear to suffice to establish agreement between 
theory and experiment within probable limits of error. 

The observed data for lower values of x, in the range 7 < x 
< 15». exhibit large departures from values calculated ac­
cording to 1-11 from either the "Monte Carlo" or the "fourth 
moment" densities W(O). Mx= 11 the discrepancy is most 
striking, Kx being only about half the value calculated ac­
cording to eq 1-11 from the improved density W(O). 

At still smaller values of x, i.e., for x < 7, the cyclization 
constant rises above the "spherical Gaussian" curve. These 
high values of Kx appear to reflect favorable angle correlations, 
as was pointed out previously.9'10 The statistical methods here 
employed fail for these shorter chains. Hence, comparison with 
calculations in this range is necessarily qualitative. 

Directional Correlation Factors 

Calculations of To(I) according to eq 1-19 require averages 
(Pic)r=o of the Legendre polynomials Pk, with k = 0, 1, 2,. .. 
and arguments y = cos Ad, over all configurations for which 
r = 0. According to eq 1-22 (or 1-27) and 1-23, the averages 
{Pk)r=o can be evaluated from moments (Pkr2p) of the 
polynomials averaged without restriction on r. For small values 
of k + p, these in turn are conveniently evaluated from mo­
ments (ymr2P) with m < k (see 1), which can be calculated 
exactly by matrix multiplication methods19 given in the Ap­
pendix to this paper. For larger k + p the sizes of the matrices 
required become prohibitively large. 

Alternatively, (P^ >r=o may be estimated according to eq 
1-22,23 by the Monte Carlo methods outlined in 1. Since the 
exact value of (r2) is easily computed by matrix methods,10'19 

it may be substituted in eq 1-23 at the outset, l eav ing/^ to 
be evaluated by taking the Monte Carlo average of the re­
sulting polynomial as a whole. Analogously, the bracketed 
series occurring in eq 1-22 and in eq 1-27, truncated at the 
chosen 2s, can be averaged in its entirety after introducing the 
separately determined value of (r2) into each term. 

In Figure 3 we show (P1)r=0^ iy)r=ocalculated accord­
ing to eq 1-27 truncated at terms of the indicated ranks 25, i.e., 

at/i,-2j, and plotted against x. All calculations were carried 
out using values of !H(G) obtained from eq 1-25 truncated at 
g4. Solid curves show results obtained from exact matrix 
multiplication calculations of the moments (yr2P), where/? 
= s, s — 1, etc., with 25 = 0,2, and 4, respectively. The points 
and dashed curves represent Monte Carlo calculations of the 
averages (P1 ) r = 0 evaluated in the manner stated above. Sets 
of 25 000 Monte Carlo chains, generated using conditional 
probabilities as above (see also 1), were employed for each 
chain length x. The error bars represent twice the standard 
deviation am of the mean (i.e., 2am = IcN1I2 where N is the 
size of the Monte Carlo sample); they embrace confidence 
limits of ca. 95%. Differences between the Monte Carlo results 
for 2/7 = 4 and the exact calculations (solid line 4) are well 
within the indicated error limits for all chain lengths x. 

The first term/] ;o required by the series in eq 1-27 for 
(P\)r=o is positive for all x and converges rapidly to zero with 
increasing x; see Figure 3. The addition of/i;2 makes (Pi >r=o 
negative for all x > 4. Inclusion of the next term,/^, decreases 
(P\ )r=o further. However, curve 4 converges toward curve 2 
with increase in x. At* = 50, where (Pi)r=ois —1.8 X 10~2, 
only 18% of this value is due to/i;4, the rest is due to/i;2. In­
clusion of/i ;6 in the series lowers the result substantially for 
x < 10. For higher x, however,/);6 tends toward zero, as is 
apparent from the fact that the curves representing (Pi )r=o 
calculated with eq 1-27 truncated at/i ;4 and/] ;6 differ im­
perceptibly for x > 10. The term/i ;s becomes insignificant 
beyond x = 5. Thus, for x > 10, the result calculated by use 
of terms evaluated by exact matrix methods up to/i;4 is ade­
quate, while for 6 < x < 10 the Monte Carlo results, including 
fi-6, are to be preferred. 

As a test of the foregoing procedure, 5000 Monte Carlo 
chains were generated for each chain length x and those whose 
termini fell within a sphere of radius br = 0.5(Z-2)1/2 around 
the origin were used to compute the average of P\(y)r<sr ** 
Pi(y)r=o- Also, following Naghizadeh and Sotobayashi,22 a 
single chain of 20 000 monomer units was generated and tested 
for compliance with the distance requirement, ry < br = 
0.5(A-2)1/2, at every monomer unit. The numbers of chains (for 
the first method) or chain sequences (for the second method) 
fulfilling the distance requirement are small due to the fact that 
W(O) is very small for short chains. Hence, the method is in­
accurate. The results, not included here, are in approximate 
agreement, however, with those obtained above by application 
ofeq 1-27. 

Corresponding calculations of the averaged Legendre 
polynomial of second order, (/Mr=O, are plotted against x in 
Figure 4. Equation 1-27 was truncated at the term/2,2* of the 
rank 2s indicated for the respective sets of data. The points and 
the lines drawn through them represent results of Monte Carlo 
calculations for 25 000 chains of each length x. Exact values 
for (r2) were substituted in eq 1-23 and the truncated poly­
nomial in eq 1-27 was averaged as a whole. The Hermite series 
Jt(Q), truncated at #4, was used as above. Error bars indicate 
2am limits. 

For x > 10, all_/2;2s vanish within indicated limits of error; 
hence, (Pi) r=o » 0. Although truncation of eq 1-27 at/2:6 
obviously is premature for x < 10, it is nevertheless noteworthy 
that (P2)r=o for x > 6 becomes increasingly negative as higher 
terms are added, whereas for x = 4 it becomes steadily more 
positive as the series is extended.23 Also, the values obtained 
for (P2)/-=0 are of comparable magnitude to those of (P\ )r=o 
in this range. 

Averaged Legendre polynomials (Pk)r=o with k = 3-7 were 
calculated similarly. The results, not included here, demon­
strate that terms up to and including/^ suffice when x > 10. 
The polynomial of third order, (P3>r=o, is zero within its error 
limits for x > 12 and positive but very small at x = 10 and 11 
(ca. 0.02 at x = 10 and ca. 0.01 atjc= 11). All terms of higher 
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Figure 3. The averaged Legendre polynomial of first order, <Pi) r .o, 
calculated according to eq 1-27 truncated at the term/i ,^ of the indicated 
rank 2s. Solid curves represent exact calculations for 2s = 0, 2, and 4. 
Points show results of Monte Carlo calculations. Error bars denote 
twice the standard error, i.e., 2am. 

order are indistinguishable from zero within limits qf accuracy 
for samples consisting of 25 000 chains at each x. In the range 
4 < x < 10, where terms up to and including/^ do not suffice 
to define (Pk >r=o adequately, (Pi)r=o shows a persistent trend 
toward positive values. Truncation of eq 1-27 at/3;6 yields 
values as large as (Pi) r~o for x = 4 and 5 (see Figure 4).23 The 
polynomials of higher order do not fit a simple pattern. They 
are negligible for x > 10. For small x, most of them assume 
relatively large positive values, however. 

Conditional probability densities 2r 0( l ) , at 7 = 1 when r 
= 0, evaluated according to eq 1-19 from the averaged Le­
gendre polynomials (Pk)r=0 determined above, are presented 
in Figure 5. The solid curve shows 2T0(I) obtained by trun­
cation of eq 1-19 at A: = 1 and eq 1-27 at/ ) ;4, the values for 
(P] )r=o given by the curve labeled "4" in Figure 3 being used. 
The crosses approximated by the dashed curve were obtained 
from eq 1-19 terminated at k = 3. The additional averaged 
Legendre polynomials with k = 2 and 3 were provided by the 
Monte Carlo calculations discussed above. 

The directional correlation between bonds 1 and n + 1 are 
unfavorable for the formation of rings if x > 10. The correla­
tion factor 2To(I) increases steadily with x but remains ap­
preciably below unity throughout the range of Figure 5. Ex­
tension of the calculations to x = 50 yields 2T0(I) = 0.95. The 
calculations, being indecisive for x < 10, do not admit of 
quantitative deductions in this range. However, the tendency 
of the averaged Legendre polynomials for k = 1, 2, and 3 to 
assume positive and relatively large values for x = 4-6 indi­
cates that 2To(I) may exceed unity for these small rings. 

The lower curve in Figure 5 shows the directional correlation 
index Dx calculated according to eq 1-30 from the persistence 
vector a and the second moment tensor (ppT) as discussed in 
1. This index duplicates the trend of 2T0(I) with decrease in 
x but not its magnitude. 

The Cyclization Equilibrium Constant Kx 

In Figure 6 we compare Kx calculated in various approxi­
mations with experimental points over the range 7 < x < 30. 
The spherical Gaussian approximation is shown by the long-
dashed curve, which duplicates the uppermost curve in Figure 

- ^ ^ 

Figure 4. Averaged Legendre polynomial of second order, (P2) r=o, cal­
culated according to eq 1-27 truncated at the term f2;p of the indicated 
rank 2s. Points are results from Monte Carlo calculations; error bars 
show 2<rm limits. 
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Figure 5. Conditional probability density T0(I) of 7 = cos A0 for r = 0 
at y = 1, multiplied by two and plotted against x. The solid line was 
obtained from eq. 1-19 terminated at k = 1 using values of (P\)r~o 
given by solid curve 4 in Figure 3. Crosses with error bars and the 
dashed line represent eq 1-19 continued to k = 3, the polynomials with 
k = 2 and 3 being evaluated by Monte Carlo methods. The lower curve 
shows the directional correlation index Dx; see eq 1-30. 

2. The dash-dot curve was obtained from eq 1-11, using JV(O) 
given by the scalar Hermite series expansion truncated at g4, 
directional correlations between bonds 1 and n + 1 being ig­
nored. Over the range covered, this curve differs imperceptibly 
from curve 4 in Figure 2, calculated using the tensor moment 
expansion. The solid line represents Kx calculated according 
to eq 1-14, using 2T0(I) as given by the solid curve in Figure 
5 (estimated from eq 1-19 truncated at k = 1; see above). The 
crosses and the short-dashed curve approximating them are 
similarly obtained from the points in Figure 5, i.e., they rest 
on Monte Carlo values of (P2)r=o and ( P 3 ) ^ 0 , in addition 
to (Pi ),=0. Experimental results for the undiluted melt at 110 
0C are shown by filled5 and open6 circles and for solutions in 
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Figure 6. Cyclization equilibrium constant Kx vs. x. The long-dashed line 
represents the Gaussian approximation, the dot-dashed line represents 
Kx calculated according to eq 1-11 from W(O) as given by the scalar 
Hermite series expansion truncated at g4, directional correlations between 
chain ends being neglected. The solid line was obtained according to eq 
1-14 with 2To(I) taken from the solid line in Figure 5. The dashed curve, 
crosses, and 1am error bars were obtained from the Monte Carlo calcu­
lations, represented in like manner as in Figure 5. Experimental points: 
(O) bulk at 110 0C, Semlyen and Wright;5 (•) bulk at 110 0C, Wright;6 

(•) toluene at 108 0C, Wright;6 (D) toluene at 110 0C, taken from the 
curve of Brown and Slusarczuk.3 

toluene at a concentration of 23 g I.-1 at 55 0C by open3 and 
filled squares.6 Results obtained in diglyme6 at the same 
concentration and temperature are indistinguishable from 
those in toluene over the range of x shown in Figure 6. 

Whereas the calculations yield values of the direction cor­
relation factor 2To(I) that depart appreciably from unity as 
x falls below 30 units, the experimental results are in excellent 
agreement with the curve (dash-dot) calculated neglecting 
angle correlations for all x > 15, as was pointed out above. 
Thus, agreement with the experimental results is worsened for 
x = 15-30 by inclusion of the directional correlation factor. 
A maximum is indicated in the theoretical curves that include 
the angle correlation, and the calculations of (Pi1)r=o offer 
evidence of a probable minimum at a small value of x. These 
features are displaced considerably from the observed maxi­
mum and minimum, however. In fact, the calculated maximum 
appears to occur in the vicinity of the experimental minimum 
in Kx at x = 12. The coincidence of calculated and experi­
mental values at this point must be regarded as coinciden­
tal.26 

On the other hand, the theoretical calculations give values 
of 2To(I) that are smaller than unity and are approximately 
of the magnitude indicated by the experimental data. Even in 
the range x = 15-18 where the divergence between theory and 
experiment is greatest, the differences are scarcely greater than 
the combined errors in the experimental data (5 to 10%) and 
in the calculations as indicated by the error bars. 

Acknowledgment. This work was supported by the National 
Science Foundation, Grant No. DMR-73-07655 A02. One of 
the authors (M.M.) is grateful to the Deutsche Forschungs-
gemeinschaft for the award of a fellowship. 

Appendix. Generator Matrices for (7 mr 2^) 

The quantities required for the calculation of (Pk)r=o by 
series expansion according to eq 1-22 and 1-23 are (ymr2P) 
with m > 0 and p > 0. Applying the general method19 for 
calculation of a constitutive property of a chain of n bonds in 
a specified conformation, we have for any positive power of the 
magnitude of the chain vector 

V2P = GfS(GXP)2^-VGZf (Al) 

where the superscript Xp denotes the self-direct product of the 
generator matrix G for the bond denoted by subscript, and 
(G^) 2 ' " - 2 ' represents the serial product of n — 2 of these 
self-direct products commencing with (GXp)2. The generator 
matrix G, for r2 is given by 

G,= 

1 21TT /2 

0 T 1 
0 0 1 

,Ki <n (A2) 

where T,- is the matrix of the transformation from the reference 
frame of bone / + 1 to that of bond i'10'19 The matrix G[i for 
the first bond is given by the first row of Gi; the matrix Gn] for 
the «th bond is given by the last column of G„. The square 
order of Gx? can be reduced from 5p by combining redundant 
elements2425 to (pj4). Thus Gx3 can be reduced from order 
125 X 125 to 35 X 35. 

The cosine of the angle Ad between bonds 1 and M + 1 is 
given by 

7 = [100]T,("> (A3) 

By use of the identity ym = 7 Xm we obtain 

ym = [100]Xm(TXm)l(,!) (A4) 

Again, the square order of the self-direct products of T can be 
reduced to (m t, 2).24 

The product y mr2P of th.ese scalar quantities for the chain 
of n bonds and an additional hypothetical bond n + 1 is given 
by 

ymr2p = JQlOO]T1)*'" ® Gff) 

X Y2^-D { 0 ® T } (A5) 

where 

Ir i X ' » 
1 
0 

0 

® 

"0" 
0 

0 

0 
. 1 . 

Xp \ 

I 

Y1 = ( T x « ® GxP)i (A6) 

The column matrix col(0,0,0,0,l) is required since r2p is 
measured for the chain with n bonds only while y stands for 
the relative orientation of bonds 1 and n + 1; col(0,0,0,0,l) 
represents G„+ j j for a bond of zero length. The order of Y, can 
be diminished by using the reduced self-direct products men­
tioned above. The generator matrix for 7V2, for instance, is 
condensed from 225 X 225 to 90 X 90 order. 

The required configurational average is given by19 

( 7 " / - ^ ) = Z - 1 S Z r I y 2 * " - 2 ' ? / ! . ] (A7) 

where Z is the configuration partition function given by the 
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serial product Ui ( n ) of statistical weight matrices U, (see eq 
1), and 

Vi= (U,- 9 Er)IlY1-H, KiKn (A8) 

Il Y,-11 is the diagonal array of the generator matrices Y, for the 
several rotational states for bond i, and E, is the unit matrix 
of the same order t as Y1-. The terminal matrices in eq A7 are 
given by19,20 

3 / [ , - U 1 S Y n 

Vn] = Un 9 YH] (A9) 
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Abstract: The probability density function W(Q) at r = 0 and the directional correlation factors 2Fo(I) for homologous poly(6-
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